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EVOLUTION OF A TURBULENT BURST 

G. I. Barenblatt, N. L. Galerkina, 
and M. V. Luneva 

UDC 551.466.263 

A complete solution of the problem of symmetric turbulent burst decay in a 
quiescent fluid is obtained using the semiempirical theory of turbulence. 

The problem considered is of interest from many points of view. In homogeneous shear 
flows near a wall the intersection and self-intersection of eddies cause isolated, sharply 
defined turbulent bursts which completely determine the development of turbulence in the 
flow. This was convincingly demonstrated by the classical experiments of Kline's group at 
Stanford [I]. Moreover, turbulence in a stratified (with respect to density in a gravity 
field) ocean is patchy or "insular" [2]. The occurrence of patches of turbulence is asso- 
ciated with turbulent bursts resulting from the breaking of internal waves or local shear 
flow instability and subsequent mixing. 

Generally speaking, the patches of turbulence associated with a burst are initially 
asymmetric. However, they rap&dly acquire a symmetrical shape and, accordingly, the problem 
of the evolution of symmetrical turbulent patches is of fundamental importance. This prob- 
lem is examined in the present article which, in addition to summarizing recent research, 
presents a number of new results. As always, most interest attaches to the intermediate- 
asymptotic stage of evolution of the burst, when the size of the turbulent patch is much 
greater than the initial value. In this stage the evolution of the patch obeys self-similar 
laws. Here, however, the self-similarity is nonclassical, so-called incomplete self-simi- 
larity (self-similarity of the second kind, scaling). Time enters into the self-similar variables 
to a power determined by the solution of the nonlinear eigenvalue problem. The solution of 
the problem is obtained within the framework of two variants of theory of turbulence of the 
Kolmogorov type [3, 4]: the classical (b, s variant and the (b, e) variant [5-7]. It is an 
important advantage of the burst problem that, because of its symmetry, at the boundaries 
the turbulent energy fluxes, energy dissipation rates, etc., are equal to zero, so that 
there is no need to use additional (often very dubious) hypotheses to determine them. The 
results are similar, so that the solution obtained is also of interest from the standpoint 
of testing the Kolmogorov semiempirical theory for essentially unsteady flows. 

I. Formulation of the Problem 

It is proposed to consider (Fig. la) the evolution of a sudden burst of turbulence in a 
homogeneous quiescent fluid. The simplest symmetrical burst shape is a statistically uni- 
form horizontal layer. Accordingly, we will investigate the decay in an unbounded quiescent 
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Fig. i. Turbulent burst in a quiescent fluid: a) arbitrary 
shape; b) in the form of a statistically uniform horizon- 
tal layer. 

fluid of a statistically uniform burst (Fig. ib) initially enclosed between the horizontal 
planes z = a and z = -a. Let ,the initial turbulent energy per unit area of the layer bound- 
ary be 

Q = ib(z,  O)dz. (1) 
W a  

Dimensionally, [O] = L3T -2. Clearly, from the two kinematic quantities Q and a it is pos- 
sible to construct a kinematic quantity of any dimensionality, so that, for instance, the 
initial conditions for the turbulent energy and the dissipation rate per unit mass can be 
written in the form: 

b (z, O) = (Q/a)rio (s), ~ (z, O) = (Q3/2/a~/2) Vo (s). ( 2 )  

H e r e ,  s = z / a ;  Uo(S) and v 0 ( s )  a r e  d i m e n s i o n l e s s  even  f u n c t i o n s  i d e n t i c a l l y  e q u a l  t o  z e ro  
when Is[ Z i. 

Thus, at an arbitrary time t the kinematic characteristics of motion are determined by 
the following parameters: 

Q, t, z, a, (3)  

the first two of which are dimensionally independent. By virtue of (3), for the turbilent 
energy b(z, t) and the rate of turbulent energy dissipation r t) per unit mass dimen- 
sional analysis gives the expressions 

b = Q2/a z-213B(~, ~), 8 = Q2/a t -5 /3E(~,  ~), (4 )  

= z/Q ~/3 t ~/3, ~ = a/Q II3 t2/a 
- " ( 5 )  

H e r e ,  B(~,  ~) and E(~ ,  ~) a r e  d i m e n s i o n l e s s  f u n c t i o n s  o f  t h e i r  d i m e n s i o n l e s s  argument:~. 
From d i m e n s i o n a l  a n a l y s i s ,  f o r  t h e  i n s t a n t a n e o u s  h a l f - t h i c k n e s s  o f  t h e  l a y e r  h ( t )  we o b t a i n  

h = Q~/3 t2/3H(~),  (6 )  

s i n c e ,  o b v i o u s l y ,  h does  n o t  depend on z;  H(~) i s  a d i m e n s i o n l e s s  f u n c t i o n  o f  i t s  dim, m-  
sionless argument. Of particular interest is the solution for large times, when the thick- 
ness of the layer is much greater than its initial value: h(t) ~ a, i.e., the asymptotic 
form of the solution (4), (6) when q ~ i. 

2. Asymptotic Form of Solution 

The assumption first in degree of complexity is that when N ~ 1 we have complete self- 
similarity with respect to the parameter q (for more details concerning the concepts of com- 
plete and incomplete self-similarity see [8]). This assumption implies that as q + 0 there 
exist finite nonzero limits of the functions B($, q), E(~, N) and H(n): 

lim B (~, n) =: B (~), lira E (~, ~) = E (~), lira H (n) = ~0, (7 )  

so that the solution (4), (6) takes the form: 

b = Q2/a t -2/aB(~) ,  ~ = Q2/a t -~ /aE(~)  ' h = ~oQ 1/3 t 2/3 . (8 )  

However, this assumption is incorrect. Thus, let us take the turbulent energy ba]ance 
equation which in the case of a statistically uniform flow without shear has the form: 

Ot b @ O z q b = - e ,  (9 )  
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and integrate it with respect to z from z = -h(t) to z = h(t), taking into account the fact 
that at the boundaries of the turbulent layer z = • both the turbulent energy and its 
flux vanish: 

b(h( t ) ,  t ) =  O, qb(h(t) ,  t ) = O .  ( 1 0 )  

We find that the rate of change of energy per unit area of the layer is negative: 

d ~ h 
�9 J[ b(z, t)dz . . . .  t' ~(z, Odz<O, (11) 

dt _ ~h 

since in the region of the turbulent layer the dissipation rate ~ is positive. At the same 
time, the solution (8) shows that the energy of unit area of the layer 

h Q2/3 h ~o 
j" b(z,  t ) d z =  t2/---- 7 -  j'B(~)dz = Q t B(~)d~ = const Q ( 1 2 )  

does not depend on time. This contradiction demonstrates the incorrectness of the assumption 
of complete self-similarity. 

We will therefore assume incomplete self-similarity (self-similarity of the second kind, 
scaling) with respect to the parameter n, i.e., the existence of power-law asymptotic forms 
of the functions B($, N), E($, N) and H(N) as n + 0 in the absence of a finite nonzero limit 
of these functions: 

B = ~a*F (~/ v,), E = qX'G (~/ v,), H = const ~]v=. ( 1 3 )  

The dimensionless constants X1, X2, ~1 ,  and ~2 are related by expressions that follow from 
the fact that the functions F and G depend on the same variable ~/n~1, and the quantities 
b, qb, and ~ satisfy the turbulent energy balance equation (9). Using these relations and 
Eqs. (4) and (13), we find that the distributions of the turbulent energy and turbulent 
energy dissipation rate and the thickness of the half-layer may be expressed as follows: 

b = AZt-2~f(~), e = A2t -2~-1 g(~),  h = At  1-~ . (14) 

Here, f = const F, g = const G, 

== z/h = z /At  1-~, ~ = (1 + 2%)/3, A = coast Q (1-v*)/a a v' . ( 1 5 )  

The parameter ~, which determines the law of expansion of the layer and the rate of decay 
of the turbulence, cannot be established from dimensional considerations. In order to de- 
termine it, it is necessary to formulate and solve the eigenvalue problem. 

3. Eigenvalue Problem: (b, e) Model 

The (b, e) model is based on the use of the turbulent energy dissipation rate balance 
equation in addition to the turbulent energy balance equation. In the case of a statis- 
tically uniform horizontal turbulent layer for zero mean flow velocity this equation takes 
the form [7]: 

a~e @ Ozq ~ ~ -- U. (16) 

The dissipation rate flux q~ and the "rate of equalization of the dissipation rate" U 
are one-point moments of the velocity fluctuation field and the gradient of that field. 

We introduce the turbulent transfer coefficients for turbulent energy k b and dissipa- 
tion rate ke: 

kb : - - q d O z b ,  k~ = - - q J O z e .  (17) 

We note that in the case of a statistically uniform layer relations (17) do not contain 
any additional hypothesis. According to the Kolmogorov hypothesis, in developed turbulent 
flow the turbulent eddy field is self-similar. Therefore, correct to the constant multi- 
pliers, all the kinematic characteristics of that field are determined by two of these quan- 
tities having different dimensions. Taking as these determining characteristics b, [b] = 
L2T-2; e, [e] = L2T -3, we obtain a closed system of equations, the (b, e) model. Thus, in 
this case dimensional analysis gives 

k b = ~ b ~ ,  k~ = ~b2/e, U = T e ~ b ,  ( 1 8 )  

so that equations (9) and (16) take the form: 

&b = ~0~ [(b~/8) O~b] - -  e, ( 1 9 )  
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OrS = ~0~ [(b2/s) 0~1 - -  Vs~/b. (20)  

The c o e f f i c i e n t s  ~, 8, and ~ a r e  found  by c o m p a r i s o n  w i t h  e x p e r i m e n t  in  c e r t a i n  ~ t a n d a r d  
p r o b l e m s .  Some i n t e r e s t i n g  s o l u t i o n s  o f  u n s t e a d y  p r o b l e m s  u s i n g  t h e  ( b ,  r model  were  g i v e n  
in  [ 9 - 1 1 ] .  We n o t e  t h a t  t h e  p r o b l e m s  c o n s i d e r e d  in  t h o s e  s t u d i e s  we re  n o n s y m m e t r i c .  

S u b s t i t u t i n g  t h e  s o l u t i o n  in  fo rm ( 1 4 ) - ( 1 5 )  in  Eqs .  (19)  and (20)  and ,  f o r  c o n v e n i e n c e ,  
taking as the unknowns f = 8F and g = 8G, we obtain for the functions f and g the system of 
ordinary differential equations 

d [/z df]+(1_~) ~ d/ (21) 
d~ [ g d~ j - ~  + 2 ~ - - g  = O, 

+ ( I - - ~ )  ~ --V - 7  -+- (1 -]- 2~) g - 0 .  
�9 (22)  

In view of the symmetry of the layer with respect to the z coordinate, it is possible 
to consider only half the layer (0 J z j R(t)) and impose the boundary conditions on the 
boundaries z = 0 and z = h(t). Clearly, on the boundary z = h(t) the turbulent energ F b, 
the dissipation rate s and their fluxes qb and qs must be continuous. Outside the turbulent 
layer the fluid is quiescent. Therefore, at z = h(t) the following conditions are satisfied: 

b = 0, ~ = 0, qb = 0, q~== 0, ( 2 3 )  

whence and f rom ( 1 7 ) - ( 1 8 )  we f i n d  

b = O, e = O, (b2/s)Ozb = O, (bZ/e)O~s = 0 when z = h ( t ) .  (24)  

Us ing  t h e  r e p r e s e n t a t i o n  o f  t h e  s o l u t i o n  ( 1 4 ) ,  we o b t a i n  t h e  f i r s t  g r o u p  o f  b o u n d a r y  z o n d i -  
t i o n s  f o r  t h e  s y s t e m  ( 2 1 ) - ( 2 2 ) :  

[ = g = O, ( [Z /g )d f /dg  = O, ( [2 /g )dg /d~  = 0when ~ = 1. (25)  

Then ,  by s y m m e t r y ,  in  t h e  m i d d l e  o f  t h e  l a y e r ,  i . e . ,  a t  z = 0, t h e  f l u x e s  a r e  e q u a l  t o  
z e r o l  

qb = q~ = 0when Z = 0, (26)  

whence and f rom ( 1 7 ) ,  (18)  we o b t a i n  t h e  s e c o n d  g r o u p  o f  b o u n d a r y  c o n d i t i o n s  f o r  t h e  : ;ys -  
tem ( 2 1 ) - ( 2 2 ) :  

(f2/g) d[/d~ = O, ( [ z ig )dg /d~  = 0 when ~ =-0.  (27)  

We note that for nonsymmetric problems (see [9-11]) the formulation of conditions analogous 
to (27) requires the introduction of important additional hypotheses. 

Thus, we have obtained a boundary value problem (25), (27) for the system of second- 
order ordinary differential equations (21), (22) containing only one parameter ~ that is 
not known in advance. Simple estimates show that the values of the parameter ~ lie ell the 
interval 1/3 < ~ < i. Moreover, the values of the parameters ~ and 8 recommended in 17, 
10, ii] give a vaTue of the ratio ~/~ that falls generally between 0.7 and 1.2. Below, we 
will confine ourselves to the simplest case ~ = 8; the complications which arise when ~/8 ~ 
1 are not of fundamental importance. 

The boundary-value problem (21), (22), (25), (27) possesses the following property: it 
is invariant under the one-parameter group of continuous transformations: 

(~ i s  t h e  g r o u p  p a r a m e t e r ) .  T h i s  p r o p e r t y  e n a b l e s  us  t o  r e d u c e  t h e  o r d e r  o f  Eqs .  (21~ ,  (22)  
and carry out a qualitative investigation of their solutions. The investigation shows that 
there exists a class of solutions f, g positive when ~ < i, identically equal to zero when 

~ i, continuous and having continuous values of (f2/g)df/dE and (f2/g)dg/dE. In the 
neighborhood of the point ~ = i when E < 1 the solution can be expanded as follows: 

f = c ( 1 - - ~ ) ( l - - ~ ) q -  . . . .  g - - c 2 ( 1 - - ~ ) ( l - - ~ ) +  . . .  (29)  

Here, the positive quantity c is, together with V, a parameter of the problem. ~ach 
pair c, U uniquely determines a nontrivial solution of the system (21), (22) satisfying con- 
ditions (25). It is necessary to find the values of the parameters c, B for which the solu- 
tion also satisfies conditions (27). Thus, as is usually the case with self-similar solutions 
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Fig. 2. Eigenvalue of the 
problem for the (b, Z) model 
as a function of the para- 
meter ci/~i 2. 

of the second kind [8], we have arrived at a nonlinear eigenvalue problem for determining 
the exponents of time in the self-similar variables. 

This problem can easily be solved numerically and corresponding calculations have been 
carried out. They confirmed that for each value of the parameter 7 > 1.5 there exists a 
unique solution of the eigenvalue problem formulated. The calculations also revealed an 
important property of the solution constructed: over the entire interval from ~ = 0 to ~ = 
i the ratio g/f is constant and equal to c, which makes it possible to obtain a solution 
in simple finite form. We set g = cf and substitute this relation in Eqs. (21), (22). We 
obtain two equations for the single function f, which coincide only if c = (7 -1) -I. In 
this case the equation for f takes the form: 

1 d If df I df q_2~f_cf=O. (30) - ~  d-~ - ~  + ( 1 - - ~ ) : - ~ -  

I n t e g r a t i n g  bo th  s i d e s  from ~ = 0 t o  ~ = 1 and u s i n g  bounda ry  c o n d i t i o n s  (25 ) ,  ( 27 ) ,  
we, f i n d  

l q - c  y 
( 1 - - 3 ~ q - c )  f' t d ~ = 0 ,  i .e .  ~ . . . . . .  , ( 31 )  

~, 3 3 ( ? - -  1) 

since the function f is positive and its integral is positive. Substituting the values 
c = 1/(7 -i) and ~ = 7/3(X -i) in (30), we obtain an equation which is easy to integrate 
with conditions (25), (27); the solution is found in finite form: 

[ = D(1 - -  ~z), g = D(1 _~2)  ( ? _  1)-1, 0 G ~ G  1, 
( 32 )  

f = g ~ 0 ,  ~ >  1, D = [ (2 /3 )?- -  1 ] /2 (?- -  1) z. 

Numerical calculation of the general non-self-similar problem for Eqs. (19), (20) with condi- 
tions (2), (24), (26) and various functions u0(s), v0(s) in the initial condition (2) showed 
that the solution of the non-self-similar problem goes over into the self-similar asymptotic 
regime (14), (31), (32). Thus, for example, if we take the value of the parameter ~ = 2 re- 
con~nended in [7], the asymptotic solution may be represented in the form: 

b = (1/6g) Q1/3at-4/3 (1 - -  ~z), s = (1/6g) Q1/3at-~/3 (1 - -  ~2), 
(33) 

= z/h, h = Q 1 / ~ a l / 2 t l / ~  

Here, we have made use of the fact that for the numerical calculations in question the 
value of const in expression (14) for the constant A is very close to unity. We recall that 
for self-similar solutions of the second kind the constant parameters of this type are de- 
termined (see [8]) not from the conservation laws but from the matching of the self-similar 
asymptotic form and the numerical solution of the non-self-similar problem. The numerical 
calculations performed also showed that for values of ~/~ on the interval of interest the 
value of the parameter H differs only slightly from 2/3. 

4. Eigenvalue Problem: (b, s 

The (b, s model is based on the turbulent energy balance equation (9) and the same 
Kolmogorov self-similarity hypothesis. However, the turbulent energy b and the scale of 
turbulence s are taken as the determining kinematic quantities. In accordance with the 
developed turbulence self-similarity hypothesis we obtain 

k b ~ l ] / ' b ,  ~---clba/2/l ,  (34) 
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where c I is a constant; the constant in the expression for k b can be taken equal to ~nity 
by renormalizing the scale of turbulence. In this case we use only the turbulent energy 
balance equation, which by virtue of (34) reduces to the form: 

�9 Orb = OJ ]/$-O~b - -  c~b 3/2/L (35) 

In order to close it, in the problem under consideration we make the simple asstm~ption 
s = ~i h, ~l = const: the scale is constant over the thickness of the layer and proportional 
to the thickness of the layer. By making this assumption we neglect the time requiled for 
the adaptation of the eddies to the dimensions of the layer. 

As before, the asymptotic solution is represented in the form (14); for determining the 
function f and the parameter ~ from Eq. (35) and conditions (I0) and, moreover, the symmetry 
condition we obtain the eigenvalue problem 

d~ L a~ j a~ O; 1 

- o ,  o ,  - o .  
d~ g~ (37) 

Because of the property of invariance under a certain group of transformations the eigen- 
value ~ proves to depend only on the combination Cl/~l 2. The problem can easily be solved 
numerically; a graph of the function ~(ci/~i 2) is reproduced in Fig. 2. 

Let us compare the solutions corresponding to the (b, E) and (b, s models and estimate 
the constants ~i and c I. Numerical calculations show that the value ~ = 2/3 obtained for 
the (b, e) model corresponds to ci/% 2 = 17 According to (34), for the (b, s model we 
have: s = clb3/2/E, so that k b = s = cmb2/e. On comparing this with (18) we obtain c I = ~. 
Hence it follows that ~l = (~/17) I/2 Introducing the value of ~ recommended in [7], we 
obtain c I = 0.064-0.085, ~ = 0.063-0.071. We note that the parameter c I is close to the 
value c I = 0.062 obtained for a layer of constant shear stress [4]. 

Thus, we have presented solutions of the problem of the evolution of a turbulent burst 
in the form of a plane layer obtained within the framework of the principal models of the 
semiempirical theory. Solutions for cylindrical (p = 0.75) and spherical (p = 0.8) bursts 
can be obtained in the same way. The solutions obtained using the two models are similar 
in form. The most important difference with respect to the solution obtained within ~ 
framework of the (b, E) model is the vanishing of the scale of turbulence s = clbS/2/,; near 
the boundary of the layer (cf. (34)) and the sharper fall in turbulent energy near the bound- 
ary. 

NOTATION 

a, initial half-thickness of the burst; b(z, t), turbulent energy per unit fluid nass; 
h(t), variable half-thickness of the burst; k b, turbulent transfer coefficient for turbu- 
lent energy; ks, turbulent transfer coefficient for dissipation rate; s scale of turbulence; 
qb, turbulent energy flux; qg, dissipation rate flux; t, time; x, longitudinal coordi~ate 
of the burst; z, transverse coordinate of the burst; Q, initial turbulent energy per ~nit 
area of the burst boundary; U, rate of equalization of dissipation rate; E, rate of dissipa- 
tion of the turbulent energy of unit mass; s, $, ~, ~, ~l, dimensionless variables defined 
by position; u0(s) , v0(s) , B($, ~), B($), E(~, n), E(~), H, F, G, f, g, fl, gl, dimen~ion- 
less_.functions definedby position ; A, c, ci, ~, al, 8, 7, Ii, 12, vl, ~2, $0, ~, constant 
parameters defined by position. 
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FLOW AND HEAT TRANSFER OF FINELY DISPERSED 

TURBULENT FLOWS IN CHANNELS 

I. V. Derevich, V. M. Eroshenko, 
and L. I. Zaichik 

UDC 532.529 

Equations for the second moments of the velocity and temperature fluctuations 
are used to study the effect of particles on the rate of turbulent momentum 
and heat transfer in the flow of a gas suspension in circular pipes. 

It is currently most promising to describe the hydrodynamics and heat transfer of tur- 
bulent disperse flows by using the system of equations for the second one-point moments of 
the velocity and temperature fluctuations of the dispersion medium with allowance for the 
presence of the particles [1-4]. The authors of [5-8] used this system to analyze the effect 
of the disperse phase on the fluctuation and mean flow and heat-transfer characteristics 
of dust-laden flows in channels for particles for which the dynamic and thermal relaxation 
times were of the same order as the integral turbulence scale. The present investigation, 
being a continuation of [5-8], studies the manner in which the rate of turbulent transport 
is affected by finer particles, having a dynamic relaxation time which is one order less 
than the microscopic time scale of the turbulence. We will also present results of calcula- 
tions of the hydrodynamics and heat transfer of dust-laden flows within a broad range of 
particle dimensions. 

i. We are examining the turbulent flow of a gas with spherical solid particles (P2 ~ Px)- 
The system of equations of motion and heat transfer of the gas in the case of a small Volume 
content of particles has the form: 

_ _  02Ui OU~ _}_ U~ OU~ _ 1 OP + ~ (1 )  
Ot Oxh p~ Ox~ Ox~Oxk 

N dV~ (t) 
o~ ~ ~]6(x- -Rp( t ) )  , 

Ol ~X dt p=l 

OOa + Uk 001 OZ01 P2C~ ~ ~ dOv(t-------~) (2) 
Ot Oxh - ~ OxhOx~ 9ac~ ~g p=~= 8(X--Rp(t)) dt  ' 

dVp___.i = 1 (U~ (Rp (t), t) - -  Vpi (t)), dRP-----L = Vpi, ( 3 )  
dt ~ dt 

dOp 1 
(e~ (~p (t), t) - -  o~ (0). (4)  

dt ~o 

If we change over from a Lagrangian description of the individual particles (3), (4) to 
an Eulerian description of the solid phase [8], average Eqs. (i) and (2) and the equations 
obtrained for the solid phase in the case of turbulent flow, and add up the equations for 
the individual phases, we obtain the equations of motion and heat transfer for the disperse 
flow as a whole: 
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